머신러닝_05_KNN 모델(Iris 데이터) 머신러닝 모델 개략도 2. 일반화, 과대적합, 과소적합: 모델의 신뢰도를 측정하고 성능을 확인하기 위한 개념 과대적합(Overfitting): 지나치게 상세하고 복잡한 모델링을 하여 훈련세트에만 과도하게 동작하는 모델, 테스트 세트의 성능 저하 -조건이 너무 까다로워 조건에 적합한 데이터가 너무 적음 과소적합: 모델링을 너무 간단하게 하여 훈련세트를 충분히 반영하지 못해 훈련세트, 테스트 세트에서 성능 저하 -조건이 단순하여 조건에 적합한 데이터가 너무 많음 일반화: 훈련세트로 학습한 모델이 테스트 데이터가 주어져도 정확히 예측할 거라 기대하는 것. 훈련세트에서 테스트 세트로 일반화가 되었다고 표현 3. 모델 복잡도 곡선 4. 모델의 복잡도 해결 일반적으로 데..